Sharp L-error Estimates and Superconvergence of Mixed Finite Element Methods for Non-fickian Flows in Porous Media∗

نویسندگان

  • RICHARD E. EWING
  • YANPING LIN
  • TONG SUN
  • JUNPING WANG
  • SHUHUA ZHANG
  • Zhichun Piao
چکیده

Abstract. A sharper L-error estimate is obtained for the non-Fickian flow of fluid in porous media by means of a mixed Ritz–Volterra projection instead of the mixed Ritz projection used in [R. E. Ewing, Y. Lin, and J. Wang, Acta Math. Univ. Comenian. (N.S.), 70 (2001), pp. 75–84]. Moreover, local L superconvergence for the velocity along the Gauss lines and for the pressure at the Gauss points is derived for the mixed finite element method via the Ritz–Volterra projection, and global L superconvergence for the velocity and the pressure is also investigated by virtue of an interpolation postprocessing technique. On the basis of the superconvergence estimates, some useful a posteriori error estimators are presented for this mixed finite element method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiblock Modeling of Flow in Porous Media and Applications

We investigate modeling flow in porous media in multiblock domain. Mixed finite element methods are used for subdomain discretizations. Physically meaningful boundary conditions are imposed on the non-matching interfaces via mortar finite element spaces. We investigate the pollution effect of nonmatching grids error on the numerical solution away from interfaces. We prove that most of the error...

متن کامل

Interior superconvergence in mortar and non-mortar mixed finite element methods on non-matching grids

We establish interior velocity superconvergence estimates for mixed finite element approximations of second order elliptic problems on non-matching rectangular and quadrilateral grids. Both mortar and non-mortar methods for imposing the interface conditions are considered. In both cases it is shown that a discrete L2-error in the velocity in a compactly contained subdomain away from the interfa...

متن کامل

Residual and Hierarchical a Posteriori Error Estimates for Nonconforming Mixed Finite Element Methods

We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002